

Viviana Cavaliere

(University of Illinois at Urbana Champaign)

XXVI Rencontres de Physique de la Vallée d'Aoste, Feb 26th-Mar 3rd 2012, La Thuile, Italy

Outline

- W, Z properties
 - Wmass at DØ
 - Wmass at CDF
 → see talk by
 Bodhitha
 Jayatilaka
 - $Z\gamma * \Delta\sigma/\Delta p_T$
- V+ γ physics
 - V_{γ}
- Massive Diboson Physics
 - WZ 77

$$M_W = 80.401 \pm 0.021(stat.) \pm 0.038(syst.) \text{ GeV}$$

= $80.401 \pm 0.043 \text{ GeV}$

The CDF and DØ experiment

- $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \ TeV$
- 36 bunches, 392 ns
- record peak luminosity: $4.1 \cdot 10^{32} cm^{-2} s^{-1}$
- CDF and DØ: multipurpose detector
- more than 12 fb $^{-1}$ delivered and \sim 10 fb $^{-1}$ acquired

W/Z production at the Tevatron

• Dominant production mechanism: $q\bar{q}'$ annihilation

- At Tevatron W and Z hadronic decays are overwhelmed by QCD background
- Identification through leptonic decays

Flectrons:

- good EM shower shape
- small hadronic energy
 - isolated in calorimeter
- well-matching good track

Muons:

- MIP in calorimeter
- isolated hits in muon chamber
- well-matching good track

Z selection:

ullet 2 oppositely charged electrons or muons invariant mass consistent with m_Z

W selection:

- exactly one lepton
- ullet energy imbalance in event E_T

$Z\gamma * \Delta\sigma/\Delta p_T$

- \bullet Select Z boson pairs using pair of electrons in the whole eta range of the detector and $66 < M_{ll} < 116~{\rm GeV/c^2}$
- \bullet Pythia 6.2 simulation of $pp \to \gamma */\bar{Z} \to ee + X$ +Photos 2.0 for final QED radiation
- The simulated, reconstructed event p_T distribution that pass all analysis cuts disagrees with the data, so the underlying Pythia p_T is tuned.
- ullet The simulation's calorimetric energy scales and resolutions are tuned to the data using dielectron mass and electron E_T distributions

Diboson: Finding rare processes

s-channel sensitive to Triple Gauge Couplings:

- Di-bosons are reality check on path to finding multilepton final states with very small $\sigma*BR$
- Significant backgrounds for several interesting processes
- Trilinear Gauge Coupling (TGC) measurements
 - s-channel is susceptible to anomalous triple gauge couplings: $K^z, K^\gamma, g_1^z, g_1^\gamma, \lambda^z, \lambda^\gamma$
 - 2 TeV with respect to LEP: explores higher energy range
 - To ensure cross sections do not violate unitarity, a form factor is introduced

$$\Delta a(\hat{s}) = \Delta a_0 / (1 + \hat{s} / \Lambda^2)^n$$

$W\gamma$ (4.2 fb^{-1}): $D\varnothing$

- Interesting for its sensitivity to BSM signatures
- Interference between tree level amplitudes produces a zero amplitude at a specific angle $\theta*$ between the W and the incoming q
- The radiation amplitude zero is visible in the $Q \times (\eta_{mu} \eta_{\gamma})$ as a dip at -0.3
- Events with $W \to \mu\nu + \gamma$:
 - Muon $p_T >$ 20 GeV/c , Electron $E_T > 25 GeV$ $\cancel{E}_T >$ 20 GeV
 - $E_T(\gamma) > 15 \text{ GeV}$
 - $\Delta R(\mu \gamma) > 0.7$,

$W\gamma$ (4.2 fb⁻¹): $D\emptyset$

- Interesting for its sensitivity to BSM signatures
- Interference between tree level amplitudes produces a zero amplitude at a specific angle $\theta*$ between the W and the incoming q
- The radiation amplitude zero is visible in the $Q \times (\eta_{mu} \eta_{\gamma})$ as a dip at -0.3
- Events with $W \to \mu\nu + \gamma$:
 - Muon $p_T >$ 20 GeV/c , Electron $E_T > 25 GeV E_T >$ 20 GeV
 - $E_T(\gamma) > 15 \text{ GeV}$
 - $\Delta R(\mu \gamma) > 0.7$,

$W\gamma$: results

- The charge signed photon-muon rapidity difference background subtracted data agrees with the SM.
- Proceed to set upper limits on $WW\gamma$ couplings using the γ E_T distribution
- More details in http://arxiv.org/abs/1109.4432v2 Phys. Rev. Lett. 107, 241803 (2011)

$$par{p} o W\gamma$$
 = 7.6 \pm 0.4 (stat.) \pm 1.6 (syst.) pb (SM= 7.6 \pm 0.2 pb) $-0.4 < \Delta\kappa_{\gamma} < 0.4$ and $-0.08 < \lambda_{\gamma} < 0.07$ for Λ = 2.0 TeV at 95 % CL.

$W\gamma$: results

- The charge signed photon-muon rapidity difference background subtracted data agrees with the SM.
- Proceed to set upper limits on $WW\gamma$ couplings using the γ E_T distribution
- More details in http://arxiv.org/abs/1109.4432v2 Phys. Rev. Lett. 107, 241803 (2011)

$$par{p} o W\gamma$$
 = 7.6 \pm 0.4 (stat.) \pm 1.6 (syst.) pb (SM= 7.6 \pm 0.2 pb) $-0.4 < \Delta\kappa_{\gamma} < 0.4$ and $-0.08 < \lambda_{\gamma} < 0.07$ for Λ = 2.0 TeV at 95 % CL.

$Z \rightarrow \mu \mu + \gamma (6.2 \, fb^{-1}) : D \varnothing$

http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/EW/E37/

- Select 1000 events of Z $\rightarrow \mu\mu$ + γ :
 - 2 hight p_T muons with $M_{ll} > 60 GeV/c^2$ Reconstructed photon with $p_T >$ 10 GeV/c and $\Delta R(mu, \gamma) > 0.7$
- $m{\circ} \quad \sigma = 0.31 \pm 0.03(stat.) \pm 0.02(syst.) \ (SM = 0.29 \pm 0.01)pb$
- Differential cross section obtained with invert matrix for two samples
 - $M_{ll\gamma} > 0 \text{ GeV/c}^2$
 - $M_{ll\gamma} > 100 \text{ GeV/c}^2$ to reduce FSR contribution (308 events)

Heavy Diboson Production

Leptonic Decay Channels

Small branching fraction and low background Clean signal but low yields
Key → increase lepton acceptance

Semileptonic Decay Channels

Larger branching fraction and much larger backgrounds

Signal / Background < 0.5%

$WZ \rightarrow \ell\ell\ell\nu$: CDF

- Fvent selection:
 - Exactly three leptons (1st with $p_T >$ 20 GeV and 2nd, 3rd with $p_T >$ 10 GeV), $\cancel{E}_T > 25 GeV$
 - ullet Z-selection, a pair of same flavor, opposite charge leptons with $76 < m_{ll} < 106~{
 m GeV}$
 - ZZ biggest background → Trilepton + track rejection to remove events with a 2nd Z-boson.
- A neural network to separate S from B → Templates are fitted to data using a binned maximum likelihood fit.

$$\sigma(WZ) = 3.9^{+0.6}_{-0.5}(stat.)^{+0.6}_{-0.4}(syst)pb \ (SM \ = 3.46 \pm 0.21pb)$$

$WZ \rightarrow \ell\ell\ell\nu$: CDF

- Event selection:
 - Exactly three leptons (1st with $p_T>$ 20 GeV and 2nd, 3rd with $p_T>$ 10 GeV), $\mathscr{E}_T>25GeV$
 - ullet Z-selection, a pair of same flavor, opposite charge leptons with $76 < m_{ll} < 106~{
 m GeV}$
 - ZZ biggest background → Trilepton + track rejection to remove events with a 2nd Z-boson.
- \bullet A neural network to separate S from B \to Templates are fitted to data using a binned maximum likelihood fit.
- Extract from Z p_T distribution also TGC limits \rightarrow HISZ scheme= 3 parameters

$$\sigma(WZ) = 3.9^{+0.6}_{-0.5}(stat.)^{+0.6}_{-0.4}(syst)pb \ (SM = 3.46 \pm 0.21pb)$$

$WZ \rightarrow \ell\ell\ell\nu$: CDF

11 / 19

- Event selection:
 - Exactly three leptons (1st with $p_T >$ 20 GeV and 2nd, 3rd with $p_T >$ 10 GeV), $\cancel{E}_T > 25 GeV$
 - $\bullet\,$ Z-selection, a pair of same flavor, opposite charge leptons with $76 < m_{ll} < 106~{\rm GeV}$
 - \bullet ZZ biggest background \to Trilepton + track rejection to remove events with a 2nd Z-boson.
- A neural network to separate S from B → Templates are fitted to data using a binned maximum likelihood fit.
- Extract from Z p_T distribution also TGC limits \rightarrow HISZ scheme= 3 parameters
- Public Web Page Link 1, Link 2

$$\sigma(WZ) = 3.9^{+0.6}_{-0.5}(stat.)^{+0.6}_{-0.4}(syst)pb \; (SM \; = 3.46 \pm 0.21pb)$$

CDF Results at 7.1fb ⁻¹								
	λ^{z}	Δg_1^Z	$\Delta \kappa^Z$					
$1.5 \mathrm{TeV}$	-0.08 - 0.10	-0.09 - 0.22	-0.42 - 0.99					
2.0 TeV	-0.09 - 0.11	-0.08 - 0.20	-0.39 - 0.90					
CDF Expected Limits at 7.1fb ⁻¹								
	λ^{Z}	Δg_1^Z	$\Delta \kappa^Z$					
2.0 TeV	-0.10 - 0.10	-0.11 - 0.20	-0.53 - 0.86					

-0.11 - 0.12 | -0.12 - 0.23

$WZ \rightarrow \ell\ell\ell\nu$: DØ

- Do not restrict the offline event selection to events satisfying specific trigger conditions → analyse all recorded data in order to maximise the event yields
- Event selection:
 - \bullet Exactly three leptons: 1st with $p_T>$ 20 (15) GeV and 2nd, 3rd with $p_T>$ 15 (10) GeV
 - $\bullet\,$ Z-selection, a pair of same flavour, opposite charge leptons with $60 < m_{ll} < 120$ GeV
- Likelihood fit to the M_T to extract cross section
- ullet Total cross section uncertainty reduced by taking the ratio to $Z o \ell\ell$ and then multiplying to theory

$$\sigma(WZ) = 4.50 \pm 0.61(stat.)^{+0.16}_{-0.25}(syst.) \ pb \ (SM = 3.46 \pm 0.21)pb$$

$ZZ \rightarrow \ell\ell\ell\ell: D\emptyset$

- Measure at the same time also 77 cross section.
- Same selection as before but requiring 4 leptons
- Fit to the NN distribution to extract cross section
- Total cross section uncertainty reduced by taking the ratio to $Z \to \ell\ell$ and then multiplying to theory
- http://arxiv.org/abs/1201.5652

$$\sigma(ZZ) = 1.64 \pm 0.44(stat.)^{+0.13}_{-0.15}(syst.) \ pb \ (SM = 1.30 \pm 0.10 \ pb)$$

$ZZ \rightarrow \ell\ell\ell\ell$ and $ZZ \rightarrow \ell\ell\nu\nu$

- Combination of two measurements:
 - $ZZ \rightarrow \ell\ell\ell\ell \rightarrow Small BR$, low background
 - Counting experiment $\sigma(ZZ) =$

$$2.03^{+0.62}_{-0.54}(stat.)\pm 0.27(syst.)~pb$$

- ZZ $\to \ell\ell\nu\nu\to Larger$ BR, large Drell-Yan background. More precise measurement.
 - Use a NN to extract the cross section $\sigma(ZZ) = 1.34^{+0.42}_{-0.39}(stat)^{+0.38}_{-0.28}(syst) pb$

- Combination is $\sigma(ZZ) = 1.64^{+0.44}_{-0.38}~pb$
- http://arxiv.org/abs/1112.2978

- ZZ production is sensitive to new physics, for example a Higgs boson or a Randall-Sundrum (RS) graviton decaying to two Z bosons
- Explore 3 channels:
 - 4 leptons; 2 with $p_T >$ 20 GeV: two same flavor pairs with invariant mass in 76-106 GeV
 - 4 events are consistent with $M_{ZZ}=$ 325 GeV/c²!

- ZZ production is sensitive to new physics, for example a Higgs boson or a Randall-Sundrum (RS) graviton decaying to two Z bosons
- Explore 3 channels:

• 2 leptons + \mathscr{L}_T : \mathscr{L}_T > 100 GeV, one reconstructed Z boson

- ZZ production is sensitive to new physics, for example a Higgs boson or a Randall-Sundrum (RS) graviton decaying to two Z bosons
- Explore 3 channels:

 $\bullet~$ 2 leptons + 2 jets: jet $p_T >$ 25 GeV; with the jet pair invariant mass in $70-100~{\rm GeV}$

- ZZ production is sensitive to new physics, for example a Higgs boson or a Randall-Sundrum (RS) graviton decaying to two Z bosons
- Explore 3 channels:

 Reinterpret the results in the terms of graviton models → Phys. Rev. D85 012008 (2012)

$WW/WZ \rightarrow \ell \nu j j$: CDF

- Semileptonic final states have larger BR and much larger backgrounds. Two analysis:
 - First approach uses the shape of Mjj to look for a clear resonance (Phys.Rev.Lett.104:101801,2010)
 - Second approach uses a matrix element calculation to build discriminant (EPD) to separate S and B (Phys. Rev. D 82, 112001 (2010))

$$\sigma(WW/WZ) = 18.1 \pm 3.3(stat) \pm 2.5(syst) \ pb$$
$$\sigma(WW/WZ) = 16.5^{+3.3}_{-3.0}(stat + syst) \ pb$$

Wjj anomalous production

- 4.1σ excess seen in dijet mass spectrum of W+2jet sample
 - Binned χ^2 fit to Mjj distribution consistent with $\sigma = 3.0pb \pm 0.7$
 - Many cross checks performed: various bkg control regions, W+jets modelling etc
- PHYS. REV. LETT. 106, 171801 (2011), and Public Webpage

- DØ repeated CDF analysis → with some minor differences
- No significant discrepancy w.r.t. background model
- Results are 2.5 σ apart
- Phys.Rev.Lett. 107 (2011) 011804

- S/B 10x worse at LHC
- Hard to understand W+ jets at that level

$WW/WZ \rightarrow \ell \nu jj: D\emptyset$

- One single reconstructed lepton + \mathcal{L}_T + 2 jets with $p_T >$ 20 GeV
- Signal and background are separated using a Random Forest classifier
- Cross section is extracted with a likelihood fit to the RF output

$$\sigma(WW/WZ) = 19.6^{+3.2}_{-3.0} \ (SM = 15.9 \pm 0.1 pb)$$

• Observed significance 7.9 σ (5.9 expected) \rightarrow http://arxiv.org/abs/1112.0536v1

$WW/WZ \rightarrow \ell \nu j j : D\emptyset$

- One single reconstructed lepton + \mathcal{E}_T + 2 jets with $p_T > 20$ GeV
- Signal and background are separated using a Random Forest classifier
- Cross section is extracted with a likelihood fit to the RF output

$$\sigma(WW/WZ) = 19.6^{+3.2}_{-3.0} (SM = 15.9 \pm 0.1pb)$$

- Observed significance 7.9 σ (5.9 expected) \rightarrow http://arxiv.org/abs/1112.0536v1
- Fit WW and WZ also separately.
- See talk by Yuji Enari tomorrow for b-tagged analysis

Conclusion

- EWK physics a rich and interesting place
 - SM tests
 - Higgs benchmark
 - New physics searches
- Huge work over ten years of Run 2
- Allows for measuring very small cross sections
- Setting some of the tightest limits on anomalous TGCs
- Some measurements are unique at the Tevatron and some other are complementary to the LHC

Backup slides

Dibosons

$$\begin{split} \frac{\mathcal{L}_{\text{WWV}}}{g_{\text{WWV}}} &= i \left[g_1^{\text{V}} (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu\nu} W^{\dagger\mu} V^{\nu}) \right. \\ &\left. + \kappa^{\text{V}} W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{\lambda^{\text{V}}}{m_{\text{W}}^2} W_{\rho\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\rho} \right] \\ \mathcal{L} &= -\frac{e}{M_2^2} \left[f_4^{\text{V}} (\delta_{\mu} V^{\mu\beta}) Z_{\alpha} (\delta^{\alpha} Z_{\beta}) + f_5^{\text{V}} (\delta^{\sigma} V_{\sigma\mu}) Z^{\mu\beta} Z_{\beta} \right] \end{split}$$

EM gauge invariance and C and P conservation

 \rightarrow 5 independent TGCs for WW { g_1^Z , κ_Z , κ_V , λ_Z , λ_V }

Wy sensitive to κ_{y} , λ_{y}

WZ sensitive to $g_1^{\prime Z}$, κ_Z , λ_Z

Standard Model: $g_1^Z = \kappa_Z = \kappa_\gamma = 1$ so consider Δg_1^Z , $\Delta \kappa_Z = \lambda_z = 0$

ZyZ vertex: Zy sensitive to $h_3^2, h_3^y, h_4^z, h_4^y$

ZZ γ vertex: ZZ sensitive to f_4^Z , f_4^γ , f_5^Z , f_5^γ all zero in SM

$$\Delta a(\hat{s}) = \frac{\Delta a_0}{(1 + \hat{s}/\Lambda_{\rm NP}^2)^n}$$

Wjj anomaly: JES

Wjj anomaly: accounting for $t\bar{t}$

- don't see it enhanced with b-tags
- Top does not peak at 150 after the detector simulation
- \bullet If we artificially double the single top cross section \to negligible effect
- Left plot: templates normalized to area. Right plot: template normalized to their expectation

Wjj anomaly: SHERPA

Wjj anomaly: Harder cuts

• $p_T(Wlep) > 60$

Wjj anomaly: Harder cuts

• $p_T(Wlep) > 60$ and $\delta \phi > 1$

D0 Wjj study

- Fit dijet mass distributions for all SM processes to the data
 - Construct a χ² function from the ratio of Poisson likelihoods and include prior information on the systematic uncertainties

$$\chi^{2}(\theta, S, B; D) = 2\sum_{i=0}^{N_{\text{bissur}}} (B_{i} + S_{i} - D_{i}) - D_{i} \ln \left(\frac{B_{i} + S_{i}}{D_{i}}\right) + \sum_{k=0}^{N_{\text{synt}}} \theta_{k}^{2}$$

$$D = \text{observed number of events}$$

$$S(\theta_{k}) = \text{predicted number of signal events}$$

$$B(\theta_{k}) = \text{predicted number of background events}$$

- Templates can vary within systematic uncertainties, constrained by Gaussian priors
- Can "float" a parameter by removing the θ^2 prior constraint
 - Float cross sections for Diboson and W+jets contributions

 θ_k = number of standard deviations systematic k has been pulled away from nominal

D0 Wjj study

Source of systematic uncertainty	Diboson signal	$W{ m +jets}$	$Z{\rm +jets}$	Top	Multijet	Nature
Trigger/Lepton ID efficiency	± 5	±5	± 5	±5		N
Trigger correction, muon channel	± 5	± 5	±5	± 5		D
Jet identification	± 1	± 1	± 2	±1		D
Jet energy scale	± 10	± 5	± 7	± 5		D
Jet energy resolution	± 6	± 1	± 3	± 6		D
Jet vertex confirmation	± 3	± 3	± 4	±1		D
Luminosity	± 6.1	± 6.1	± 6.1	± 6.1		N
Cross section		± 6.3	± 6.3	± 10		N
V+hf cross section		± 20	± 20			N
V+2 jets/ $V+3$ jets cross section		± 10	± 10			N
Multijet normalization					± 20	N
Multijet shape, electron channel					±1	D
Multijet shape, muon channel					±10	D
Diboson modeling	± 8					D
Parton distribution function	±1	± 5	± 4	± 3		D
Unclustered Energy correction	± <1	± 3	± 3	\pm <1		D
ALPGEN η and $\Delta R(jet1, jet2)$ corrections		$\pm < 1$	$\pm < 1$			D
ALPGEN W p_T correction		$\pm < 1$				D
ALPGEN correction Diboson bias	± 1	± 1	± 1	± 1		D
Renormalization and factorization scales		± 1	± 1			D
ALPGEN parton-jet matching parameters	± 1	± 1			D	
Parton shower and Underlying Event		± 2	± 2			D